PHYSICAL REVIEW E VOLUME 57, NUMBER 5 MAY 1998

Self-organized criticality in dynamics without branching
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We demonstrate the phenomenon of self-organized critice0 in a simple random walk model de-
scribed by a random walk of a myopic ant, i.e., a walker who can see only nearest neighbors. The ant acts on
the underlying lattice aiming at uniform digging, i.e., reduction of the height profile of the surface but is
unaffected by the underlying lattice. In one, two, and three dimensions we have explored this model and have
obtained power laws in the time intervals between consecutive events of “digging.” Being a simple random
walk, the power laws in space translate to power laws in time. We also study the finite size scaling of
asymptotic scale invariant process as well as dynamic scaling in this system. This model differs qualitatively
from the cascade models of SOG1063-651X98)03105-5

PACS numbgs): 05.40:+j, 68.35.Fx, 47.55.Mh

The concept of self-organized criticali(OC was intro-  Measurements of the distance traveled by the bird at various
duced by Bak, Tang, and Wiesenfeld in the context of avatimes are carried out. They found a power-law behavior in
lanches in a sandpile mod@TW mode) [1]. A diffusively  distribution of flight time events. Interestingly, the observa-
coupled spatially extended system which is driven adiabatition is that though the distribution deviates significantly from
cally, i.e., the drive occurs only when the system has beefimple random walk, it is still a power law implying a scale
fully relaxed, settles in the metastable state with very longnvariant manner in which the flights proceed. Assuming that
correlations and no characteristic length scale. This model ithe flight directions change randomly after finding food, they
termed to be self-organized since the critical state is reache@rgued that the data they have suggests that the distribution
though no particular parameter seems to have been adjusteaf.food on the ocean surface is also scale invariant. Although
There have been further variants of the above model whickve do not attempt to model this experiment, it nicely illus-
have similar rules, but are in different universality cl§®s  trates the fact that not only the branching processes but the
The above models are cellular automata models in which thgrocesses induced by a simple random walk or flight also can
discrete variable value assigned to different points on #®rganize themselves in a scale invariant fashion in time and
d-dimensional lattice are updated in discrete tif8& The space. We would also like to note that continuous time ran-
relevant perturbations in which SOC gets destroyed has begtpm walks have been used to explain SOC in rice piles re-
a topic of interest to many researchgs. Developing a  cently[11].
partial differential equation model for SOC has also been an We introduce a model of self-organized scale invariant
active area of interest5]. There have been models with behavior in space and time which is induced by random
threshold dynamics in continuous variable values such as th&alk. A model of Eulerian walker$EW) has been intro-
adaptive dynamics model on coupled map lattices or earthduced recently12]. Our model is simpler in the sense that
quake models, though it is debatable whether the power lawsnlike the above model, the walker is unaffected by the me-
arising in these models can be termed as self-orgafigz@l  dium. As will be clear in the course of discussion, not only it

In all these models SOC is induced by a branching prois in a different universality class, but is even qualitatively
cess. The disturbance propagates from one length scale to tHéferent from the earlier models.
other by branching in various directions and this hierarchical Let us first discuss our model in one dimension for sim-
basis for the dynamics leads to a power-law behavior. Thiglicity. We consider a lattice of length. At each sitei, 1
description of branching leading to power laws has beer<i<L, we associate an integgy which denotes the height
given for diverse processes such as the intermittent turbule®f that point and—o~<x;<0. To begin with, we assigr;
process by Kolmogoroy8] or income distributions in the =0 for alli. We put a random walker at a randomly chosen
U.S. by Schlesingel9]. However, scale invariant processes sitej (1<j=<L). Now the dynamics of the lattice is defined
need not be produced by branching alone. The disturbande the following way. (a) At each time step, the random
can choose a random direction yielding scale invariant strucwalker moves to its nearest neighbor which is chosen ran-
ture. Here we propose a simple random walk model for SOCdomly. (b) Before moving to the next site, the random
As a physical illustration, we would like to note a recent walker compares the height at that site with those of nearest
experimental observation by Vishwanatheimal. [10] about  neighbors and reduces the height at that site by 1 unless any
the foraging behavior of sea birds. In this experiment, theof the nearest neighbors has a higher height. In other words,
authors studied the foraging behavior of wandering albatrossf random walker is at sitd, then
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FIG. 1. Schematic diagram of the configurations that change by R
the action of the random walker which is at the center. Slopes are P (b) .
also shown. 10 ¢ =

reduction of height as “digging.” The condition above on 1020 o2 [
digging is introduced since the aim of the random walker is NN - = -
to dig uniformly and it does not want to dig the site which 102l VN e
already has a height lower than any of its neighbors. Though S
the medium is affected by the walk, the walker is unaffected — , 4 A oo
by the medium, i.e., the next site to which the random walker 310" ¢ [
moves is chosen randomly and is independent of the entire O3 5 ‘l Lo
height profile. At boundaries the comparison is only one 107¢ SR
sided. If the random walker moves out of the lattice, we put
it back in a randomly chosen site within the lattice. Since the 10°¢
random walker can not see beyond nearest neighbors we call
the model the digging myopic atbDMA) model. We can 107
also describe the model in terms of the evolution rule for the D
slopes on either side of the random walk@y construction 1078 = e . 5
the slopes can take only three values 1, 0, arfd) Of the 10 10 10 10
nine possible combinations, four of them transform as 1,0 S
-0,1;,1-1-0,0; 0,0-—-1,1; 0-1——-1,0 while the
other five remain unchange@ee Fig. 1. The rule at the left
boundary is 6-1; —1—0 and 1-1 while at the right . enveen two events wsin 1D. [In both figures(A) L=10, (B)
boundar_y -0,0—--1 and—1—>—1.. Note that except at L=25, (C) L=50, (D) L=100, and(E) L=1000. Insets show
boundaries the sum of slopes remains conserved. We al§gjjte.size scaling. Here and in all the following figures the quan-
note that the changes in boundary conditions do not changgies piotted are dimensionless.
the results qualitatively. Digging by two units when the
walker is on the hill (11— —1,1) also does not change . _ .
results qualitatively, at least in 1D. We note that with this H€re, the system is driven by random perturbations and
change the rules seem to be very similar to a traffic janil® time intervat between two successive events of digging
model with symmetry breaking13]. However, since the When the medium is affected by the walker is a quantity of
evolution is highly spatially correlated in our case the prop-nterest. We compute the distributié(t) whereP(t) is the
erties are very different. normalized _prc_)bat_nllty that the time between two successive
We start with a flat surface. This means that in the begin€Vents of digging is. We also compute the probability dis-
ning all sites are potentially “active,” i.e., they can be dug. tribution D(s), the number of distinct sites visited by the
However, as the surface evolves, often a big valley or a bi andom walker betwgen two successive events. We find that
slanted surface appears. If one ignores the fact that the sitédt) ~t 7, y=1.6. Itis clear that the distributiob(s) can-
dug subsequently are not independent of each other, rathBPt be independent d?(t) since in a simple random walk
are spatially nearby, i.e., the noise in our case is correlatediumber of distinct sites visited in timet goes ad™*. This
one can relate the distribution of times required to reachmplies D(s)~s™ 7, y'=2y—1. (This is also verified in
active sites to the spatial distribution of active sites. Now wefinite-size scaling defined lat¢Thus as one would expect, a
look at the distribution of time intervals between which ac-power-law distribution in time translates in a power-law dis-
tive sites were visited. tribution in space. Figureg@ and Zb) showP(t) andD(s)

FIG. 2. (a) The interevent time distributioR(t,L) vs timet in
1D. (b) Probability distributionD(s,L) thats distinct sites are vis-
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for various lattice sizes in one dimensi¢tD). If one looks ot

at the spatial profile of the lattice developed after a long 107 AN 102 b
time, one can see a surface which is far from uniform. Thus Jg: r
a myopic random walker who started the walk aiming at a 107 10t L
uniform digging of the surface, ends up digging the surface e

in a scale invariant manner. Thus, unlike the BTW model, 108L
this model shows nontrivial nontransient scaling properties ___
even in one dimension. However, we note that it has prop- :‘ 10k
erties common with earlier SOC models. It is a conservative [~
model except at the boundaries in the sense that the sum of 10°%F
slopes at all the sites does not change unless digging occurs
at the boundary. As in earlier model, the boundary conditions 10°E
are open. However, as seen above, evolution rule described
in terms of local slopes is anisotropic. The relation with the 107k
distribution of active sites is not clear since noise is corre-
lated. 10855 ~
Given the nature of the distributions, i.e., a simple 10 10
power law followed by an exponential tail, one can fit 1
a finite-size scaling formP(t,L)=L"#G(t/L"),D(s,L)

17/

=L *F(s/L”) (u=yv and u'=v'v'), to the distribu- y (b) Lo
tions[14]. In 1D we can fit the scaling nicely with=2,»' 10 = 180:
=1. This is useful in higher dimensions in particular where - jwo*e -
it is difficult to do a very large size simulations and scaling 107¢ ot r o
form gives the power-law exponents with reasonable accu- 3 10* 10% 102 10" 10°
racy. In Fig. 2 depicting the distributior®(t) andD(s), we 107 s (L)LY
also show the finite-size scaling in the inset. T
The model can be easily extended to higher dimensions. 5107 ¢
We have studied this model in two and three dimensions. We & \
plot interevent time distributio(t) in 2D and 3D in Figs. 10°F |
3(a) and 4. As in IDP(t)~t~? with y~1.2y~2 in 2D and
y~1.2py~1.8 in 3D. Since the number of distinct sites cov- 10°¢ Al
ereds goes ag/In(t) in 2D and ast in 3D [15], one can \
expect a power-law distribution fdb(s) as well with ' 107 E \
=vy. We numerically verified thay=y’. Of course, in 2D, I
we expect a logarithmic correction in the power-law form. 108 5 ~ : s
Numerically, we observe thab(s,L)=L"* F(sIn(L)/L"") 10 10 10
with v=1v'" gives a good fit. Figure(8) shows the distribu- S

tion D(s) in 2D. For 3D, site distribution was beyond our g, 3. (g P(t,L) vs timet in 2D. (b) D(s,L) vs s in 2D. [In
available computational resources. However, we expect it tgoth figuregA) L= 10, (B) L =25, (C) L=50, (D) L = 100, and(E)
closely follow theP(t). In Figs. 3 and 4, the insets show the | =200. Insets show finite-size scaliilg.
finite-size scaling in each of the cases as in Fig. 2. The geo-
metrical picture in 2D is identical to that in 1D. One seesheight of the interface at time Growth depends on nearest
valleys of all sizes present in the asymptotic height profile inneighbors and thus the correlations develop in time and span
2D. This is understandable. As in the sandpile model if onehe entire lengtiL. When the entire surface gets correlated
has a configuration with a single big valley, the randomthe width saturates. The roughnesd.,t) follows a scaling
walker can go to the boundary and dig making sites in theelation o(t,L) =L%f(t/L?) (see, e.g.[16]). The exponent
interior active and thus one expects many evefits.our  z=q/B+1. Here we note that normally in growth models
model, one more configuration in which not many sites will with sequential updates, one scales titrie units of L as-
be active will be a long tilted interface. However, by the suming that the entire interface gets updated aftetime
same logic, it will not stay for long.Similarly, starting with  steps. We have not done so since it conflicts with our earlier
a flat interface, one expects many events since all sites afgtion of time. However, one can see that the above scaling
active. Thus the surviving configuration, or the configurationyith redefined time will be same as well known Family-
which will be attained most of times will be the one in which Vicsek Sca"ng re|ati0[ﬁ16]_ The exponenﬁ: 0.565 Signi-
valleys of all sizes are present. _ ~ fies the growth in time in the beginningr(t,L)~t#), z

We have also seen how the profile changes in timegiyes saturation timet{,~L?) anda=1.1 signifies satura-
The simplefst quantitativ_e measure t_hat demonstrategon width (sar-L%). The scaling form with the above fit
the geometrical changes in the profile is roughness. Thghich assumes a power-law growth followed by saturation is
roughnesso(L,t) of the interface of lengthL at time  reasonably goodsee Fig. 5. For small times (<9, L>t)
t (starting with a flat interfage is given by o(t,L)  one can easily compute all the possible configurations and
= \/(1/L)2i":l(xi(t)—x(t))2, where x(t) is the average their probabilities analytically. The values computed so are
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FIG. 4. P(t,L) vst in 3D. Inset shows finite-size scaling. FIG. 5. Roughness-(t,L) vs timet for variousL in 1D. Inset

shows the dynamic scaling of the interface.
in close agreement with simulations and also yield the

%iromthinixopggeztf;g'ssgg'nl]‘atrgtfc \i/r?tlgr?‘agg reflects the fusion. This model is hopefully easier to handle analytically
gnly 9 ymp j since the exponents in space are easily related to exponents

We have also studied a variant of the model in which ong, time and one does not have a lot of unrelated and ill-

tries to reduce the correlation between successive events li%derstood exponents. We also feel that such models could
putting the random walker in a random position after eacl‘be of use in situations which yield scale invariant behavior

(lil/llggltn(?f. J]ZuSJQE;?\;?@Z?&L?;“E}'Q ;%réillaé%dnirx:?;r?eébut do not involve cascades, but rather have diffusion as the
q 9 only way in which information spreads in the system.

The dynamic scaling in this variant and further investigations
in the current model as well as its variant are deferred to a The authors have enjoyed discussions with N. Kumar, C.
future publication. Vanderzande, and G. Ananthakrishna. P.M.G. acknowledges

In short, we have proposed a model of self-organizecdtorrespondence with D. Dhar. M.P.J. acknowledges financial
criticality in which the governing mechanism is that of dif- support from IFCPAR Grant No. 1108-1.
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