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Self-organized criticality in dynamics without branching
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We demonstrate the phenomenon of self-organized criticality~SOC! in a simple random walk model de-
scribed by a random walk of a myopic ant, i.e., a walker who can see only nearest neighbors. The ant acts on
the underlying lattice aiming at uniform digging, i.e., reduction of the height profile of the surface but is
unaffected by the underlying lattice. In one, two, and three dimensions we have explored this model and have
obtained power laws in the time intervals between consecutive events of ‘‘digging.’’ Being a simple random
walk, the power laws in space translate to power laws in time. We also study the finite size scaling of
asymptotic scale invariant process as well as dynamic scaling in this system. This model differs qualitatively
from the cascade models of SOC.@S1063-651X~98!03105-5#

PACS number~s!: 05.40.1j, 68.35.Fx, 47.55.Mh
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The concept of self-organized criticality~SOC! was intro-
duced by Bak, Tang, and Wiesenfeld in the context of a
lanches in a sandpile model~BTW model! @1#. A diffusively
coupled spatially extended system which is driven adiab
cally, i.e., the drive occurs only when the system has b
fully relaxed, settles in the metastable state with very lo
correlations and no characteristic length scale. This mod
termed to be self-organized since the critical state is reac
though no particular parameter seems to have been adju
There have been further variants of the above model wh
have similar rules, but are in different universality class@2#.
The above models are cellular automata models in which
discrete variable value assigned to different points on
d-dimensional lattice are updated in discrete time@3#. The
relevant perturbations in which SOC gets destroyed has b
a topic of interest to many researchers@4#. Developing a
partial differential equation model for SOC has also been
active area of interest@5#. There have been models wit
threshold dynamics in continuous variable values such as
adaptive dynamics model on coupled map lattices or ea
quake models, though it is debatable whether the power l
arising in these models can be termed as self-organized@6,7#.

In all these models SOC is induced by a branching p
cess. The disturbance propagates from one length scale t
other by branching in various directions and this hierarch
basis for the dynamics leads to a power-law behavior. T
description of branching leading to power laws has be
given for diverse processes such as the intermittent turbu
process by Kolmogorov@8# or income distributions in the
U.S. by Schlesinger@9#. However, scale invariant process
need not be produced by branching alone. The disturba
can choose a random direction yielding scale invariant st
ture. Here we propose a simple random walk model for SO
As a physical illustration, we would like to note a rece
experimental observation by Vishwanathanet al. @10# about
the foraging behavior of sea birds. In this experiment,
authors studied the foraging behavior of wandering albatr
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Measurements of the distance traveled by the bird at var
times are carried out. They found a power-law behavior
distribution of flight time events. Interestingly, the observ
tion is that though the distribution deviates significantly fro
simple random walk, it is still a power law implying a sca
invariant manner in which the flights proceed. Assuming t
the flight directions change randomly after finding food, th
argued that the data they have suggests that the distribu
of food on the ocean surface is also scale invariant. Althou
we do not attempt to model this experiment, it nicely illu
trates the fact that not only the branching processes but
processes induced by a simple random walk or flight also
organize themselves in a scale invariant fashion in time
space. We would also like to note that continuous time r
dom walks have been used to explain SOC in rice piles
cently @11#.

We introduce a model of self-organized scale invaria
behavior in space and time which is induced by rand
walk. A model of Eulerian walkers~EW! has been intro-
duced recently@12#. Our model is simpler in the sense th
unlike the above model, the walker is unaffected by the m
dium. As will be clear in the course of discussion, not only
is in a different universality class, but is even qualitative
different from the earlier models.

Let us first discuss our model in one dimension for si
plicity. We consider a lattice of lengthL. At each sitei , 1
< i<L, we associate an integerxi which denotes the heigh
of that point and2`,xi<0. To begin with, we assignxi
50 for all i . We put a random walker at a randomly chos
site j (1< j <L). Now the dynamics of the lattice is define
in the following way. ~a! At each time step, the random
walker moves to its nearest neighbor which is chosen r
domly. ~b! Before moving to the next site, the rando
walker compares the height at that site with those of nea
neighbors and reduces the height at that site by 1 unless
of the nearest neighbors has a higher height. In other wo
if random walker is at sitek, then

xk5xk21

unlessxk11.xk or xk21.xk . We will note this event of
5019 © 1998 The American Physical Society
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5020 57PRASHANT M. GADE AND M. P. JOY
reduction of height as ‘‘digging.’’ The condition above o
digging is introduced since the aim of the random walke
to dig uniformly and it does not want to dig the site whic
already has a height lower than any of its neighbors. Tho
the medium is affected by the walk, the walker is unaffec
by the medium, i.e., the next site to which the random wal
moves is chosen randomly and is independent of the en
height profile. At boundaries the comparison is only o
sided. If the random walker moves out of the lattice, we
it back in a randomly chosen site within the lattice. Since
random walker can not see beyond nearest neighbors we
the model the digging myopic ant~DMA ! model. We can
also describe the model in terms of the evolution rule for
slopes on either side of the random walker.~By construction
the slopes can take only three values 1, 0, and21.! Of the
nine possible combinations, four of them transform as
→0,1; 1,21→0,0; 0,0→21,1; 0,21→21,0 while the
other five remain unchanged.~See Fig. 1.! The rule at the left
boundary is 0→1; 21→0 and 1→1 while at the right
boundary 1→0, 0→21 and21→21. Note that except a
boundaries the sum of slopes remains conserved. We
note that the changes in boundary conditions do not cha
the results qualitatively. Digging by two units when th
walker is on the hill (1,21→21,1) also does not chang
results qualitatively, at least in 1D. We note that with th
change the rules seem to be very similar to a traffic j
model with symmetry breaking@13#. However, since the
evolution is highly spatially correlated in our case the pro
erties are very different.

We start with a flat surface. This means that in the beg
ning all sites are potentially ‘‘active,’’ i.e., they can be du
However, as the surface evolves, often a big valley or a
slanted surface appears. If one ignores the fact that the
dug subsequently are not independent of each other, ra
are spatially nearby, i.e., the noise in our case is correla
one can relate the distribution of times required to rea
active sites to the spatial distribution of active sites. Now
look at the distribution of time intervals between which a
tive sites were visited.

FIG. 1. Schematic diagram of the configurations that change
the action of the random walker which is at the center. Slopes
also shown.
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Here, the system is driven by random perturbations a
the time intervalt between two successive events of diggi
when the medium is affected by the walker is a quantity
interest. We compute the distributionP(t) whereP(t) is the
normalized probability that the time between two success
events of digging ist. We also compute the probability dis
tribution D(s), the number of distinct sitess visited by the
random walker between two successive events. We find
P(t);t2g, g'1.6. It is clear that the distributionD(s) can-
not be independent ofP(t) since in a simple random walk
number of distinct sitess visited in timet goes ast1/2. This
implies D(s);s2g8, g852g21. ~This is also verified in
finite-size scaling defined later.! Thus as one would expect,
power-law distribution in time translates in a power-law d
tribution in space. Figures 2~a! and 2~b! showP(t) andD(s)

y
re

FIG. 2. ~a! The interevent time distributionP(t,L) vs time t in
1D. ~b! Probability distributionD(s,L) that s distinct sites are vis-
ited between two events vss in 1D. @In both figures~A! L510, ~B!
L525, ~C! L550, ~D! L5100, and ~E! L51000. Insets show
finite-size scaling.# Here and in all the following figures the quan
tities plotted are dimensionless.
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57 5021SELF-ORGANIZED CRITICALITY IN DYNAMICS . . .
for various lattice sizes in one dimension~1D!. If one looks
at the spatial profile of the lattice developed after a lo
time, one can see a surface which is far from uniform. Th
a myopic random walker who started the walk aiming a
uniform digging of the surface, ends up digging the surfa
in a scale invariant manner. Thus, unlike the BTW mod
this model shows nontrivial nontransient scaling proper
even in one dimension. However, we note that it has pr
erties common with earlier SOC models. It is a conserva
model except at the boundaries in the sense that the su
slopes at all the sites does not change unless digging oc
at the boundary. As in earlier model, the boundary conditi
are open. However, as seen above, evolution rule descr
in terms of local slopes is anisotropic. The relation with t
distribution of active sites is not clear since noise is cor
lated.

Given the nature of the distributions, i.e., a simp
power law followed by an exponential tail, one can
a finite-size scaling formP(t,L)5L2mG(t/Ln),D(s,L)
5L2m8F(s/Ln8) (m5gn and m85g8n8), to the distribu-
tions @14#. In 1D we can fit the scaling nicely withn52,n8
51. This is useful in higher dimensions in particular whe
it is difficult to do a very large size simulations and scali
form gives the power-law exponents with reasonable ac
racy. In Fig. 2 depicting the distributionsP(t) andD(s), we
also show the finite-size scaling in the inset.

The model can be easily extended to higher dimensio
We have studied this model in two and three dimensions.
plot interevent time distributionP(t) in 2D and 3D in Figs.
3~a! and 4. As in 1D,P(t);t2g with g'1.2,n'2 in 2D and
g'1.2,n'1.8 in 3D. Since the number of distinct sites co
ereds goes ast/ ln(t) in 2D and ast in 3D @15#, one can
expect a power-law distribution forD(s) as well with g8
5g. We numerically verified thatg5g8. Of course, in 2D,
we expect a logarithmic correction in the power-law for
Numerically, we observe thatD(s,L)5L2m8F„sln(L)/Ln8

…

with n5n8 gives a good fit. Figure 3~b! shows the distribu-
tion D(s) in 2D. For 3D, site distribution was beyond ou
available computational resources. However, we expect
closely follow theP(t). In Figs. 3 and 4, the insets show th
finite-size scaling in each of the cases as in Fig. 2. The g
metrical picture in 2D is identical to that in 1D. One se
valleys of all sizes present in the asymptotic height profile
2D. This is understandable. As in the sandpile model if o
has a configuration with a single big valley, the rando
walker can go to the boundary and dig making sites in
interior active and thus one expects many events.~In our
model, one more configuration in which not many sites w
be active will be a long tilted interface. However, by th
same logic, it will not stay for long.! Similarly, starting with
a flat interface, one expects many events since all sites
active. Thus the surviving configuration, or the configurat
which will be attained most of times will be the one in whic
valleys of all sizes are present.

We have also seen how the profile changes in tim
The simplest quantitative measure that demonstr
the geometrical changes in the profile is roughness.
roughnesss(L,t) of the interface of lengthL at time
t ~starting with a flat interface! is given by s(t,L)

5A(1/L)( i 51
L

„xi(t)2 x̄(t)…2, where x̄(t) is the average
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height of the interface at timet. Growth depends on neare
neighbors and thus the correlations develop in time and s
the entire lengthL. When the entire surface gets correlat
the width saturates. The roughnesss(L,t) follows a scaling
relation s(t,L)5La f (t/Lz) ~see, e.g.,@16#!. The exponent
z5a/b11. Here we note that normally in growth mode
with sequential updates, one scales timet in units of L as-
suming that the entire interface gets updated afterL time
steps. We have not done so since it conflicts with our ear
notion of time. However, one can see that the above sca
with redefined timet will be same as well known Family
Vicsek scaling relation@16#. The exponentb50.565 signi-
fies the growth in time in the beginning„s(t,L);tb

…, z
gives saturation time (tsat;Lz) and a51.1 signifies satura-
tion width (ssat;La). The scaling form with the above fi
which assumes a power-law growth followed by saturation
reasonably good~see Fig. 5!. For small times (t,9, L@t)
one can easily compute all the possible configurations
their probabilities analytically. The values computed so

FIG. 3. ~a! P(t,L) vs time t in 2D. ~b! D(s,L) vs s in 2D. @In
both figures~A! L510, ~B! L525, ~C! L550, ~D! L5100, and~E!
L5200. Insets show finite-size scaling.#
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5022 57PRASHANT M. GADE AND M. P. JOY
in close agreement with simulations and also yield
growth exponentb50.565. Large value ofa reflects the
highly inhomogeneous asymptotic interface.

We have also studied a variant of the model in which o
tries to reduce the correlation between successive even
putting the random walker in a random position after ea
digging. Thus the noise is not spatially correlated any long
Most of the qualitative features of the model do not chan
The dynamic scaling in this variant and further investigatio
in the current model as well as its variant are deferred t
future publication.

In short, we have proposed a model of self-organiz
criticality in which the governing mechanism is that of d

FIG. 4. P(t,L) vs t in 3D. Inset shows finite-size scaling.
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fusion. This model is hopefully easier to handle analytica
since the exponents in space are easily related to expon
in time and one does not have a lot of unrelated and
understood exponents. We also feel that such models c
be of use in situations which yield scale invariant behav
but do not involve cascades, but rather have diffusion as
only way in which information spreads in the system.
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FIG. 5. Roughnesss(t,L) vs time t for variousL in 1D. Inset
shows the dynamic scaling of the interface.
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@11# M. Boguñá and Á. Corral, Phys. Rev. Lett.78, 4950~1997!.
@12# V. B. Priezzhev, D. Dhar, A. Dhar, and S. Krishnamurth

Phys. Rev. Lett.77, 5079~1996!.
@13# M. R. Evanset al., Phys. Rev. Lett.74, 208 ~1995!.
@14# L. P. Kadanoffet al., Phys. Rev. A39, 6524~1989!.
@15# See, e.g., A. M. Nemirovsky, H. O. Martin, and M. D

Coutinho-Filho, Phys. Rev. A41, 761 ~1990!.
@16# A.-L. Barabási and H. E. Stanley,Fractal Concepts in Surface

Growth ~Cambridge University Press, Cambridge, 1995!.


